Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Changhee Cho

Changhee Cho

KERI, South Korea

Title: Study on the test platform of the battery management system for the large-scale lithium battery energy storage

Biography

Biography: Changhee Cho

Abstract

As the exponential deployment of the sustainable energy sources like photovoltaic and wind generators, electrical energy storages (EES) are also being installed globally to compensate the unstable renewables. Lithium-ion battery (LiB) is the most popular type of rechargeable battery in EES.  However, LiB has safety problems such as fire, explosion or the damage of the
battery itself unless it is within the proper operating range. The hazards are more critical than other secondary batteries because it has much higher energy and power density. The Battery Management System (BMS) is an essential and critical component to keep the safety of the EES. Because of these risks, there are many testing standards in various applications to provide functional safety requirements of the LiB. Some of them describe the system level requirements including BMS but it is limited and cannot fully support the test of BMS functions. The purpose of the study is to develop the test platform and procedures of the BMS that can give in-depth test of BMS. The test platform is based on the HILS (Hardware in the Loop Simulation) technology with realtime battery simulation. Inside the platform, the LiB is simulated as the electricity equivalent circuit model, and the simulated signals such as voltage, temperature, currents are provided to BMS via hardwire signals. To test BMS for the large-scale EES some signals are transferred via communication because the hardware interfaces are limited. Test procedures and scenario to verify the functions of BMS include measurement accuracy, sensor/IO fault, protections, performance and so forth. With this test platform and test procedure, it is expected to develop more reliable BMS which conclusively supports safer EES.