Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Muhammad Afzal

Muhammad Afzal

KTH Royal Institute of Technology, Sweden

Title: Semiconductor-ionic materials for low temperature solid oxide fuel cells and electrolyte-layer free fuel cells

Biography

Biography: Muhammad Afzal

Abstract

In this work, demonstration of new advanced materials for advanced solid oxide fuel cells (ASOFCs) is reported to lower the operating temperature of solid oxide fuel cells (SOFCs). Nanocomposite semiconductor-ionic ceramic materials are prepared by solid state route through ball milling process and investigated as the catalytic electrode for low temperature solid oxide fuel cells (LTSOFCs) as type I device and core material for electrolyte-layer free fuel cell technology as type II device illustrated in Fig. 1. Synthesized perovskite oxides have exhibited great electrical conductivities, especially the Ba0.5Sr0.5Co0.8Fe0.2O3-δ prepared by co-precipitation method has shown a maximum conductivity up to 313 S/cm in air at 550°C measured by DC 4 probe technique. Similarly, Ni0.8Co0.15Al0.05Li (NCAL) oxide has shown balance electrical and ionic conductivity which is very useful for fuel cell performance. Additional advantages of BSCF and NCAL with both ionic and electronic conductivities are their cost effectiveness and low working temperature below 600°C. XRD analysis on the powdered form of BSCF sample exhibited the phase structure as perovskite oxide. Microstructure studies of the samples have revealed homogeneous structure and morphology of the nanoparticles using scanning electron microscopy (SEM). The prepared materials including semiconductor-ionic and perovskite materials have shown very good mechanical strength and stability proving their importance in advanced fuel cell technology using spark plasma sintering technique. Power densities for new energy conversion technology using our synthesized materials are measured between 600-1000 mWcm-2.

 

Image

Figure 1: Schematic for SOFC (Type I) and EFFC (Type II).

Recent Publications: 

1. Bin Zhu*, Peter Lund, Rizwan Raza, Ying Ma, Liangdong Fan, Muhammad Afzal et al, Schottky junction effect on high performance fuel cells based on nanocomposite materials, accepted by Adv. Energy Mater. 1401895 (2015) 1-6

2. Huiqing Hu, Qizhao Lin, Zhigang Zhu, Xiangrong Liu, Muhammad Afzal, Yunjuan He, Bin Zhu, Effects of Composition on the Electrochemical Property and Cell Performance of Single Layer Fuel Cell, J. Power Sources 275 (2015) 476-482

3. Huiqing Hu, Qizhao Lin, Afzal Muhammad, Bin Zhu, Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell, J. Power Sources 286 (2015) 388-393

4. Muhammad Afzal, Rizwan Raza, Shangfeng Du, Raquel Bohn Lima, Bin Zhu, Synthesis of Ba0.3Ca0.7Co0.8Fe0.2O3-δ composite material as novel catalytic cathode for ceria-carbonate electrolyte fuel cells, Electrochimica Acta, Volume 178, 1 October 2015, Pages 385-391

5. Bin Zhu, Yizhong Huang, Liangdong Fan, Ying Ma, Baoyuan Wang, Chen Xia, Muhammad Afzal, Bowei Zhang, Wenjing Dong, Hao Wang, Peter D. Lund, Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle, Nano Energy, Volume 19, January 2016, Pages 156-164

6. Yunjuan He, Liangdong Fan, Muhammad Afzal, Manish Singh, Wei Zhang, Yufeng Zhao, Junjiao Li, Bin Zhu, Cobalt oxides coated commercial Ba0.5Sr0.5Co0.8Fe0.2O3−δ as high performance cathode for low-temperature SOFCs, Electrochimica Acta, Volume 191, 10 February 2016, Pages 223-229

7. Wenjing Dong, Azra Yaqub, Naveed K. Janjua, Rizwan Raza, Muhammad Afzal, Bin Zhu, All in One Multifunctional Perovskite Material for Next Generation SOFC, Electrochimica Acta, Volume 193, 1 March 2016, Pages 225-230

8. Chen Xia, Baoyuan Wang, Ying Ma, Yixiao Cai, Muhammad Afzal, Yanyan Liu, Yunjuan He, Wei Zhang, Wenjing Dong, Junjiao Li, Bin Zhu, Industrial-grade rare-earth and perovskite oxide for high-performance electrolyte layer-free fuel cell, Journal of Power Sources, Volume 307, 1 March 2016, Pages 270-279

9. Bin Zhu, Liangdong Fan, Hui Deng, Yunjuan He, Muhammad Afzal, Wenjing Dong, AZRA YAQUB, Naveed K. Janjua, LiNiFe-based layered structure oxide and composite for advanced single layer fuel cells, Journal of Power Sources, Volume 316, 1 June 2016, Pages 37-43

10. Muhammad Afzal, Chen Xia, Bin Zhu, Lanthanum-doped Calcium Manganite (La0.1Ca0.9MnO3) Cathode for Advanced Solid Oxide Fuel Cell (SOFC), Materials Today: Proceedings, Volume 3, Issue 8, 2016, Pages 2698-2706

11. Muhammad Afzal, Mohsin Saleemi, Baoyuan Wang, Chen Xia, Yunjuan He, Jeevan Jayasuriya, Bin Zhu, Fabrication of novel electrolyte-layer free fuel cell with semi-ionic conductor (Ba0.5Sr0.5Co0.8Fe0.2O3-δ- Sm0.2Ce0.8O1.9) and Schottky barrier, Journal of Power Sources, Volume 328, 1 October 2016, Pages 136-142

12. Baoyuan Wang, Yixiao Cai, Chen Xia, Yanyan Liu, Afzal Muhammad, Hao Wang, Bin Zhu, CoFeZrAl-oxide based composite for advanced solid oxide fuel cells, Electrochemistry Communications, Volume 73, December 2016, Pages 15-19

13. Baoyuan Wang, Yixiao Cai, Wenjing Dong, Chen Xia, Wei Zhang, Yanyan Liu, Muhammad Afzal, Hao Wang, Bin Zhu, Photovoltaic properties of LixCo3-xO4/TiO2 heterojunction solar cells with high open-circuit voltage, Solar Energy Materials and Solar Cells, Volume 157, December 2016, Pages 126-133

14. Yuzheng Lua†, Muhammad Afzalb†(equal first author), Bin Zhu*b,c, Baoyuan Wangb,c, Jun Wang*a and  Chen Xiab, Nanotechnology Based Green Energy Conversion Devices, Recent Patents on  Nanotechnology, 2017, 11, 000-000 (accepted)

15. Chen Xia, Muhammad Afzal, Baoyuan Wang, Aslan Soltaninazarlou, Wei Zhang, Yixiao Cai, Bin Zhu. Mixed-conductive membrane composed of natural hematite and Ni0.8Co0.15Al0.05LiO2-δ for electrolyte layer-free fuel cell. Advanced Materials Letters, 2017, 8(2), 114-121.

16. Chen Xia, Baoyuan Wang, Yixiao Cai, Wei Zhang, Muhammad Afzal, Bin Zhu. Electrochemical properties of LaCePr-oxide/K2WO4 composite electrolyte for low-temperature SOFCs. Electrochemistry Communications, 2016, DOI:10.1016/j.elecom.2016.12.013.

17. Chen Xia, Yixiao Cai, Baoyuan Wang, Muhammad Afzal, Wei Zhang, Aslan Soltaninazarlou, Bin Zhu. Strategy Towards Cost-Effective Low-Temperature Solid Oxide Fuel Cells: A Mixed-conductive Membrane Comprised of Natural Minerals and Perovskite Oxide. Journal of Power Sources, 2017, accepted.​

18. Yanyan Liu, Wei Zhang, Baoyuan Wang, Muhammad Afzal, Chen Xia, Bin Zhu, Industrial Grade LaCe1.85Pr0.03Nd0.06Ox/Na2CO3 Nanocomposite for Novel Low-Temperature Semiconductor-ionic Membrane Fuel Cell. Advanced Materials Letters, 2016, DOI: 10.5185/amlett.2016.1431 (accepted)