Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Klemen Pirnat

Klemen Pirnat

National Institute of Chemistry, Slovenia

Title: Li-organic batteries and beyond

Biography

Biography: Klemen Pirnat

Abstract

A lot of research has been recently focused on the development of new battery technologies, which would replace existing Li-ion batteries. Main research goal is to develop batteries with higher energy densities that would be at the same time produced from cheap and sustainable materials. One of the promising technologies is Li-Organic batteries. Some results on Li-Organic systems have shown capacities as high as 600mAh/g, but with limited electrochemical stability. The major problem of organic materials is their dissolution in electrolyte inside the battery, which results in large capacity losses during cycling. There are several approaches to overcome this issue: polymerization of organic molecules, use of iono-selective separators, grafting on solid support, use of solid electrolytes, use of insoluble active materials, etc. Our work has started in the field of grafting, where electroactive calixarenes were grafted on inactive carriers. However, grafting approach has also severe limitations due to addition of electrochemically inactive support that lowers the mass of active material. To minimize this effect we pursued new electrode preparation approach through use of grafted graphene nano-ribbons without any binder or additional conductive carbon (electrochemically inactive). This could improve the overall capacity of the battery. Third research direction is use of electro-active polymers that exhibit very stable capacities and we are currently focused on new polymerization procedures with purpose of obtaining higher capacities. Another advantage of organic materials is also the possibility of use in beyond Li battery systems. We have recently implemented electro-active organic polymer into the magnesium organic battery and have obtained promising results.